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Figure 1-1 2-D LCD array.
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Figure 1-2 Electromagnetics is at the heart of numerous systems aridaipms.



Table 1-1 Fundamental SI units.

Dimension Unit Symbol
Length meter m
Mass kilogram kg
Time second S
Electric current ampere A
Temperature kelvin K
Amount of substance | mole mol




Table 1-2 Multiple and submultiple prefixes.

Prefix Symbol Magnitude
exa E 108
peta P 10
tera T 1012
giga G 10
mega M 106
kilo k 103
milli m 103
micro u 1076
nano n 1079
pico p 1012
femto f 1015
atto a 10;18
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Figure 1-3 Gravitational forces between two masses
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Figure 1-4 Gravitational fieldy, induced by a mass
m.
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Figure 1-5 Electric forces on two positive point charge
in free space.
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Figure 1-6 Electric fieldE due to charge.
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Figure 1-7 Polarization of the atoms of a dielectri
material by a positive charge
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Figure 1-8 Pattern of magnetic field lines around a b
magnet.



Figure 1-9 The magnetic field induced by a steac
current flowing in thez direction.



Table 1-3 The three branches of electromagnetics.

Branch

Condition

Field Quantities (Units)

Electrostatics

Stationary charges
(9q/0t=0)

Electric field intensitye (V/m)
Electric flux densityD (C/m?)
D=c¢E

Magnetostatics Steady currents Magnetic flux densityB (T)
(01 /ot =0) Magnetic field intensityH (A/m)
B=uH
Dynamics Time-varying currents E, D, B, andH

(time-varying fields)

(91/0t + 0)

(E,D) coupled to(B,H)




Table 1-4 Constitutive parameters of materials.

Parameter Units | Free-Space Value

Electrical F/m | & =8.854x 10712
permittivity & N %T 109
pemaeganbﬁltilt; y | Hm Ho = 4mx 1077
Conductivity o S/m 0




Figure 1-10 A one-dimensional wave traveling on
string.




Two-dimensional wave

\

(a) Circular waves

Cylindrical wavefront

Plane wavefront )

/

AN

(b) Plane and cylindrical waves

Spherical wavefront

/
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/

(c) Spherical wave

Figure 1-11 Examples of two-dimensional and three-dimensional wag@scircular waves on a pond, (b) a plane ligl
wave exciting a cylindrical light wave through the use of agamarrow slit in an opaque screen, and (c) a sliced sectian |

spherical wave.
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(b) y(x, ?) versus tatx =0

Figure 1-12 Plots ofy(x,t) = Acos(%* — Z%) as a
function of (a)x att = 0 and (b)t atx = 0.
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Figure 1-13 Plots ofy(x,t) = Acos(Z: — Z%) as a
function ofx at (&)t =0, (b)t =T /4, and (ct =T/2.
Note that the wave moves in thex direction with a
velocityup = A /T.
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Figure 1-14 Plots ofy(0,t) = Acos|(2nt/T) + @) for three different values of the reference phase
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Figure 1-15 Plot ofy(x) = (10e~%% cosmnx) meters. Note that the envelope is bounded between the cuerelny 1G22
and its mirror image.
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Figure 1-16 The electromagnetic spectrum.
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Figure 1-17 Individual bands of the radio spectrum and their primargadtions in the US. [See expandable version
book website: em.eecs.umich.edu.]



It x = |z| cos
y z Y =|z| sin @
I 2] =3/ %2 +)2
2| ; 0= tan~! (y/x)
I
I
0 I
)‘C > me(z)

Figure 1-18 Relation between rectangular and pol:
representations of a complex number x+ jy = |zlel®.
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Figure 1-19 Complex number¥ andl in the complex
plane (Example 1-3).
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Figure 1-20 RC circuit connected to a voltage sourc
Us(t).
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Table 1-5 Time-domain sinusoidal functionsz(t) and
their cosine-reference phasor-domain counterpart&,
where z(t) = Re[Ze!“].

2t) z
Acoswt > A .
Acogwt + @) > Ad®
Acog wt + BX+ @) <> AclPxtn)
Ae coqwt + Bx+ @) <> Ae TelBt@)
Asinwt > Ae T2
Asin(wt + @) <> Ael(w-12)
2 ) - joZ
dt J
d .
a [Acoq wt + @)] >  jwAel®
. -
JESL: B0 DS
jo
/Asin(wt + @) dt <> jiwAeJ(%fn/Z)
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Figure 1-21 RL circuit (Example 1.4).
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Incident wave
ﬁ

x=0

Figure P1.7 Wave on a string tied to a wall at= 0
(Problem 1.7).
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Figure P1.29 Circuit for Problem 1.29.
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Figure 2-1 A transmission line is a two-port network connecting a getwrcircuit at the sending end to a load at tt

receiving end.
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Figure 2-2 Generator connected to an RC circu
through a transmission line of length
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Dispersionless line
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Short dispersive line
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Long dispersive line

Figure 2-3 A dispersionless line does not distol
signals passing through it regardless of its leng
whereas a dispersive line distorts the shape of -
input pulses because the different frequency compone
propagate at different velocities. The degree of distarti
is proportional to the length of the dispersive line.
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(a) Coaxial line (b) Two-wire line
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(d) Strip line (e) Microstrip line
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(c) Parallel-plate line
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Z(Metal ground plane
Dielectric spacing

(f) Coplanar waveguide

TEM Transmission Lines

(g) Rectangular waveguide

i ~ Concentric

dielectric
layers

(h) Optical fiber

Higher-Order Transmission Lines

Figure 2-4 A few examples of transverse electromagnetic (TEM) andédriginder transmission lines.



- - - Magnetic field lines

—— Electric field lines

Coacxial line .i g

Generator Load
Cross section

Figure 2-5 In a coaxial line, the electric field is in the radial directibetween the inner and outer conductors, and
magnetic field forms circles around the inner conductor. ddeial line is a transverse electromagnetic (TEM) trassion
line because both the electric and magnetic fields are ootieido the direction of propagation between the generatdr .

the load.



(a) Parallel-wire representation

Az Az Az Az

(b) Difterential sections each Az long

R'Az L'Az R'Az L'Az R'Az LAz R'Az LAz
——o—AM— TN —T———WA—"T1I— —o
G' Az J‘C’Az G' Az J‘C’Az G' Az —'l'C'Az G' Az —'I'C’Az
O O O O O
Az | Az [ Az | Az

(c) Each section is represented by an equivalent circuit

Figure 2-6 Regardless of its cross-sectional shape, a TEM transmiksmis represented by the parallel-wire configuratit
shown in (a). To obtain equations relating voltages andecitst the line is subdivided into small differential sentigb), each
of which is then represented by an equivalent circuit (c).



Table 2-1 Transmission-line parametersR/, L, G, and C’ for three types of lines.

Parameter Coaxial Two-Wire Parallel-Plate  Unit
RS 1 1 ZRS ZRS
R\ 2a (a g 5) ) 0 Q/m
/ H H 2_ g
L 2nln(b/a) nln [(D/d) +4/(D/d) 1} w H/m
2no o ow
G —_— S/m
In(b/a) In [(D/d) +,/(D/d)2— 1} h
c/ 21e TIE EW E/m
In(b/a) In [(D/d) +,/(D/d)2— 1} h

Notes: (1) Refer té-ig. 2-4for definitions of dimensions. (3), &, ando pertain to the
insulating material between the conductors.R3} +/1tf ¢/ dc. (4) e and e pertain
to the conductors. (5) fD/d)? > 1, then In[(D/d) + /(D/d)2— 1] ~ In(2D/d).




Conductors
(4, o)

Insulating material
(e, u, 0)

Figure 2-7 Cross section of a coaxial line with
inner conductor of radiusa and outer conductor of
radiusb. The conductors have magnetic permeabjlity
and conductivityae, and the spacing material betwee
the conductors has permittivity, permeabilityu, and
conductivitya.
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N (@ N+1 a0 ..
RAz LAz}
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I Az I

Figure 2-8 Equivalent circuit of a two-conductor
transmission line of differential lengthe.
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(Vo' Ig)e ” Incident wave

Z,
(Vo .1y )e’” Reflected wave .

F—z

O

Figure 2-9 In general, a transmission line can suppc
two traveling waves, an incident wave (with voltag
and current amplitudesv§, 1)) traveling along the
+zdirection (towards the load) and a reflected wave (w!
(Vo » 1)) traveling along the-z direction (towards the
source).
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strip (e, oc)
Dielectric
insulator
(e o

Conducting ground plane (u., o)

(a) Longitudinal view

(c) Microwave circuit

Figure 2-10 Microstrip line: (a) longitudinal view, (b)
cross-sectional view, and (c) circuit example. (Courte
of Prof. Gabriel Rebeiz, U. California at San Diego.)
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15 Microstrip
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w = strip width
100 h = substrate thickness -
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Figure 2-11 Plots ofZy as a function of for various
types of dielectric materials.



Table 2-2 Characteristic parameters of transmission lines.

Propagation Phase Characteristic
Constant Velocity Impedance
y=a+jB Up Zy
i /
Generalcase | y=+/(R+jwl)(G+jwC’) U=w/B Zo= %
Lossless a=0, B=w/&/C Up=c¢/\& Zo=+/L'/C’
(R=G =0
Lossless coaxial o =0, = w./&/c Up=c¢/\/& Zo=(60/\/&)In(b/a)
Lossless a=0, B=w/&/C Up=c¢/\& Zo=(120/\/%)
two-wire -In[(D/d) 4+ /(D/d)?—1]
Zy~ (120/+/&)In(2D/d),
if D>d
Lossless a=0, B=w/&/C Up=c¢/\/& Zo=(120m/\/&) (h/w)
parallel-plate

Notes: (1)u = Ho, € = &€&, ¢=1//Ho&, andy/ /&~

of insulating material. (2) For coaxial linaandb are radii of inner and outer conductors. (3) For two-wj

(120m) Q, whereg; is the relative permittivity

line, d = wire diameter andd = separation between wire centers. (4) For parallel-plate W = width
of plate anch = separation between the plates.

ire




Transmission line

B
-

O 3+ ‘TL
\ 1 I
7, ,9 7 Z n [z
Generator - - Load
| -z
Z==( =0
d< |
d=1 d=0

Figure 2-12 Transmission line of length connected

on one end to a generator circuit and on the other ¢
to a loadZ_. The load is located at = 0 and the

generator terminals are a& —I|. Coordinated is defined

asd=-z



Table 2-3 Magnitude and phase of the reflection coefficient for variousypes of loads. The normalized load impedance
7 =2 /Zy=(R+jX)/Zy =r + jx, wherer = R/Zy and x = X /Z; are the real and imaginary parts ofz_, respectively.

Reflection Coefficientl” = |I'|el®
Load T 6r

. —1)24+x2)Y? X X
Z %] _ (r=1+x° i X\ L X
0 Z = (r+jx)Zo [(r m 1)2+x2] tan (r — 1) tan (r n 1)
2y ﬁl Zy 0 (no reflection) irrelevant

Zy | (short) 1 +180° (phase opposition)
—o0
Zy (open) 1 0 (in-phase)

o 3 jX=jwL 1 +180° — 2tan 1x

1]

—J

I
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Figure 2-13 RC load (Example 2-3).
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~ 0.8
|V lmin 0.6
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A 'ﬁ Ii dmini e
14 2 "4
1 (a) |M(d)| versus d
1 : ~
(z
Current' : : e
- ' 30 mA
Umax = = = 25
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mmin """" 15
max i 10
5
d + ' 10
A 34 3 A
4 2 4

(b) |I(d)| versus d

Figure 2-14 Standing-wave pattern for (& (d)| and

(b) |i'(d)| for a lossless transmission line of characteris|
impedanceZy = 50 Q, terminated in a load with a
reflection coefficienf = 0.3e/3%", The magnitude of the
incident wave|V"| = 1 V. The standing-wave ratio is

S= |V|max/|V|min = 1.3/0.7 = 1.86.
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Matched line
p Vo'l
i 3 P P 0
4 2 4
(@) ZL=2y
Short-circuited line ~
14
| 2 | [V(d)|
2|V
i 3 P 0 0
4 2 4
(b) Z1, =0 (short circuit)
Open-circuited line N
| W | [(d)|
2|V
d
A 31 A A 0
4 2 4

(c) Z1 = oo (open circuit)

Figure 2-15 \oltage standing-wave patterns for (a)
matched load, (b) a short-circuited line, and (c) an ope
circuited line.
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Figure 2-16 Slotted coaxial line (Example 2-6).
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(b) Equivalent circuit

Figure 2-17 The segment to the right of termind&’
can be replaced with a discrete impedance equal to
wave impedancg(d).
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Figure 2-18 At the generator end, the terminate
transmission line can be replaced with the inp
impedance of the ling&;,.
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Figure 2-19 Transmission line terminated in a sho
circuit: (a) schematic representation, (b) normaliz
voltage on the line, (c) normalized current, ar
(d) normalized input impedance.
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Figure 2-20 Shorted line as equivalent capacitc
(Example 2-8).




Zionc — ZO
d O O
@ ! 0
d

(b) 2

]
I
I
: Currentw 2iVo
; T1
I
I
) . 0

A

4

T-1
Zin®

Impedance JZo

2 A
I 2
1 1
I I
1 1
I I
I I
I I
1 1
I 1 \/
1 1
I I
} }
A A
I 2
I I
I I

(d)

ENPNS

JL
e

Figure 2-21 Transmission line terminated in an ope
circuit: (a) schematic representation, (b) normaliz
voltage on the line, (c) normalized current, ar
(d) normalized input impedance.
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Figure 2-22 Configuration for Example 2-10.



Table 2-4 Properties of standing waves on a lossless transmissiondin

Voltage maximum
Voltage minimum

IV |max = Vo' [[L+ T[]
|V|min = |V0+|[1_ “_”

- . A nA
Positions of voltage maxima (also Omax= Zr— + - n=0,1,2,...
positions of current minima) n
6:A .
-/ fo<@ <m
Position of first maximum (also Omax= { 47T
position of first current minimum) 6 o A < 6 <0
4T 2’ - -
. . 6:A 2n+1)A
Positions of voltage minima (also Armin = 4r_n %, n=0,12,...

positions of current maxima)

Position of first minimum (also
position of first current maximum)

A
dmin = Z <1+ %)

Input impedance

o (atitnpl (141
Z'”_Zo(l+sztanBI)_Zo(l—l‘|>

Positions at whiclzj, is real

at voltage maxima and minima

Z, at voltage maxima Zin=29 <14_r—:;:>
Z;, at voltage minima Zin = Zo <1—_|l‘|>
1+r|
Zj, of short-circuited line Z3¢ = jZptanpl
Zi, of open-circuited line Z2° = —jZgcotpl
Z;, of line of lengthl =nA /2 Zn=2, n=012,...
Z;, of line of lengthl = A /4+nA /2 Zn=22/Z, n=0,12,...
Z;, of matched line Zin =2o

Vo' | = amplitude of incident wave; = |I'|e!® with —11< 6 < 11; 6 in radiansT| = Fe 128!,




Transmission line
— Zg O O
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() R
AN o= 25
1 T
d=1 d=0

Figure 2-23 The time-average power reflected by a lo¢
connected to a lossless transmission line is equal to
incident power multiplied by |.



Short-circuit
load

==~ {Fp}=0.54 —.34 Open-circuit

load

Unit circle

6,=270° or —90°

Figure 2-24 The compleX plane. Poinfis atl o = 0.3+ j0.4=0.5e/5% and poinBis atl g = —0.5— j0.2 = 0.54e/207
The unit circle corresponds 6| = 1. At pointC, I' = 1, corresponding to an open-circuit load, and at p8ipnf = —1,
corresponding to a short circuit.
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Figure 2-26 Point P represents a normalized load impedance= 2 —
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Figure 2-27 PointArepresents a normalized load=2— j1 at 0.287 on the WTG scale. Poirg represents the line inpu
atd = 0.1A from the load. AB, z(d) = 0.6 — j0.66.
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0.037A, and the distance between the load al

dmax
ro

0.2134

LT
g8
80, = fm
7
$
L.
o
)
$ 3
2
g
o
=
IS
=
£
R=
g

i = 0.287

r

=2+ j1. The standing wave
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Figure 2-28 PointArepresents a normalized load wih
between the load and the first voltage maximur,igx

the first voltage minimum iglmjn




Load admittance y1,

Figure 2-29 Point A represents a normalized loagl = 0.6 + j1.4. Its corresponding normalized admittance
yL = 0.25— j0.6, and it is at poinB.




0.1354

Location
of [V]max

0.5+/1

0.5+ j1 at Q1351 on the WTG
4.26. The distance from to B gives

0.3651. PointD represents the normalized input impedange- 0.28— j0.40,

and pointE represents the normalized input admittagge= 1.15+ j1.7.

0.62. At B, the standing-wave ratio 8

83 and|I'| = OA/O0

0.1152 and fromA to C givesdmin

Figure 2-30 Solution for Example 2-11. Poink represents a normalized load

scale. AtA, 6

Omax




Voltage min

0.6— j0.8.

3, pointB represents the location of the voltage minimur

and pointC represents the load atl®51 on the WTL scale from poirB. At C, z.

Figure 2-31 Solution for Example 2-12. Poirtdenotes tha®




Feedline M A
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Matching

Z0 Zin—> network

M!
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Generator Load
Figure 2-32 The function of a matching network is
to transform the load impedan@g such that the input
impedancej, looking into the network is equal t6, of

the feedline.



Feedline
A4 transformer A
°—/
7o  Zin—> Zy T ZL
S °
(a) If Zy is real: in-series A/4 transformer inserted at 44’
Z(d)
Feedline M| A4 | d | 4
—iB |
201 Lin—> Zp ——= Zo ZL
M A’

(b) If Z; = complex: in-series A/4 transformer inserted
at d = dyax or d = dpyin

w(dy)
Feedline M A

Zy L —> C Zy VA

(c) In-parallel insertion of capacitor at distance d,

Feedline M

A Lip = L

r

L
:I’,ﬂ

(d) In-parallel insertion of inductor at distance d,

ys(h)
Feedline | Ml dy |4
Zy \ Zy 71,
A.ll A ’ |
Zy
h

(e) In-parallel insertion of a short-circuited stub

Figure 2-33 Five examples of in-series and in-parallel matching nekaor



Feedline M

Feedline M d |
Yo Yin— | Y Yo YL
Mt O_|
\ Shunt element Load

(a) Transmission-line circuit

Yip —> Y4

M =T

(b) Equivalent circuit

Figure 2-34 Inserting a reactive element with admittangeat MM’ modifiesYy to Y;,.




Y, Ya,
dy = 0.0631 dy =0.207)
Feedline | Feedline |
Yo 50nH [ v =(04+/08)Y, Yo J— 50 pF Yy = (0.4 +0.8)Y,

(a) First solution

1

(b) Second solution

Figure 2-35 Solutions for Example 2-13.



First intersection of
gr. = 1 circle with SWR circle.

AL C,yg = 1+/1.58.

¢ ®\ g =1circle

Admittance of
short circuit stub
(Example 2-14)

Figure 2-36 Solution for pointC of Examples 2-13 and 2-14. Poiftis the normalized load witlh, = 0.5— j1; pointBis
yL = 0.4+ j0.8. PointC is the intersection of the SWR circle with the = 1 circle. The distance frol toCisd; = 0.063A.
The length of the shorted stuk o F) isl; = 0.09A (Example 2-14).




dy =0.2071

Admittance of
short circuit stub
(Example 2-14)

s
L=04101" N\~

Second intersection of

g1, = 1 circle with SWR circle.
AtD, yg, =1 -j1.58.

Figure 2-37 Solution for pointD of Examples 2-13 and 2-14. Poiitis the second point of intersection of the SWR circ
and theg, = 1 circle. The distancB to D givesd, = 0.207A, and the distancE to G givesl, = 0.410A (Example 2-14).
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Feedline M
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(b) Equivalent circuit

Figure 2-38 Shorted-stub matching network.
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(a) Pulse of duration t () V(@) =V1(0) + Va(0)

Figure 2-39 Arectangular puls¥ (t) of durationt can be represented as the sum of two step functions of opjmsirities
displaced byr relative to each other.
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(a) Transmission-line circuit
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(b) Equivalent circuit at 7= 0"

Figure 2-40 Att = 0", immediately after closing the
switch in the circuit in (a), the circuit can be represent

by the equivalent circuit in (b).
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Figure 2-41 Voltage and current distributions on a lossless transonisine att = T/2,t = 3T /2, andt = 5T /2, due to
a unit step voltage applied to a circuit wilty = 4Zo andR_ = 2Z5. The corresponding reflection coefficients &re= 1/3
andlrg = 3/5.
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(c) Voltage versus time at z = //4

Figure 2-42 Bounce diagrams for (a) voltage and (b) current. In (c), thieage variation with time at=1/4 for a circuit
with 'g = 3/5 andl"_ = 1/3 is deduced from the vertical dashed liné/at in (a).
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(¢) Voltage waveform at the load

Figure 2-43 Example 2-15.
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(b) The fault at z = d is represented by a
fault resistance Ry

Figure 2-44 Time-domain reflectometer of Exampls
2-16.
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Figure P2.3 Transmission-line model for Problem 2.2
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Figure P2.20 Circuit for Problem 2.20.
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Figure P2.26 Circuit for Problem 2.26.
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Figure P2.28 Circuit for Problem 2.28.



Figure P2.33 Circuit for Problem 2.33.
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Figure P2.34 Circuit for Problem 2.34.
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Figure P2.35 Circuit for Problem 2.35.
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Generator
Z1,=75 Q
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Figure P2.43 Antenna configuration for Problem 2.43.
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Figure P2.44 Circuit for Problem 2.44.
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Figure P2.45 Circuit for Problem 2.45.
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Figure P2.50 Circuit for Problem 2.50.
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Figure P2.63 Circuit for Problem 2.63.
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Figure P2.72 Network for Problem 2.72.
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Figure P2.74 Circuit for Problem 2.74.
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Figure P2.77 Voltage waveform for Problems 2.77 an
2.79.
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Figure P2.78 Voltage waveform of Problem 2.78.
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Figure P2.82 Circuit for Problem 2.82.



Figure 3-1 VectorA = aA has magnitudé = |A| and
points in the direction of unit vecté@= A /A.
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(b) Components of 4

Figure 3-2 Cartesian coordinate system: (a) ba:
vectorsX, ¥, andz, and (b) components of vectér.



B
(a) Parallelogram rule (b) Head-to-tail rule

Figure 3-3 Vector addition by (a) the parallelogram rul:
and (b) the head-to-tail rule.



X

o . _—
Figure 3-4 Distance vectolRi2 = PIP, = Ry — Ry,
whereR; and R, are the position vectors of poinfy
andP,, respectively.



(a) (b)

Figure 3-5 The anglefag is the angle betweeh andB,
measured fromA to B between vector tails. The dol
product is positive if 0< Bag < 9C°, as in (a), and it is
negative if 90 < Bag < 180, as in (b).



® A xB=nABsin O,p
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(a) Cross product

AxB

A
(b) Right-hand rule

Figure 3-6 Cross productA x B points in the
direction fi, which is perpendicular to the plane
containingA andB and defined by the right-hand rule.
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Figure 3-7 Geometry of Example 3-1.



Table 3-1 Summary of vector relations.

Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates
Coordinate variables X,Y,Z r,Q,z R 6,p
Vector representationA = XA+ YAy + ZA; F A +fm¢ +zA; RAR+ éAg +<AM¢
Magnitude of A |A| = {AZ+HAZ+AZ (/AN A2 (/AR A+ A
" — N N - R N A
Position vector OoP, = XX1+VYy1+ 27, r1+ 2z, RRy,
for P(xq,¥1,21) for P(ry, ¢1,21) for P(Ry, 61, 1)
Base vectors properties | X-X=9-§=2-2=1 | f-i=@-¢=2-2=1| R-R=0-6=¢-9=1
X-y=9-2=2-%=0 | 7-@=@-2=2:T=0 R-6=6-9=¢-R=0
XXy =2 Fx@=2 Rx6=0
yxz=xX Pxz=T7 Ox@=R
ZxX=y Zxf=¢@ ¢xR=0
Dot product A-B= | AB«+AB+AB, | AB +ABy+AB;, ARBR + AgBg + ApBy,
Xy 2 P 2 R 6 ¢
Crossproduct AxB= Ac Ay A A Ay A AR Ag Ay
BX By BZ Br B(p BZ BR Be B(p
Differential length  dl = X dx+ 9 dy+2dz fdr+qrdp+2dz | RdR+6RdO+@RsiNG do
Differential surface areas dsx = X dydz ds =frdedz dsg = I?stine dode
dsy =y dxdz ds, = @dr dz dsg = BRsin6 dRdg
ds, = zdxdy ds, = 2r dr dg ds(,,:&)RdeQ
Differential volume dV = dxdydz rdrdedz R?sin6 dRdO dg




z ds, =Z dx dy
dy

> ds, =y dx dz

/ZI dz
= Ve dv = dx dy dz

Figure 3-8 Differential length, area, and volume ir
Cartesian coordinates.
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Figure 3-9 PointP(r1,@,z) in cylindrical coordinates;; is the radial distance from the origin in they plane,@ is the
angle in thex-y plane measured from theaxis toward they axis, andz is the vertical distance from they plane.
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Figure 3-10 Differential areas and volume ir
cylindrical coordinates.
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Figure 3-11 Geometry of Example 3-3.



Figure 3-12 Cylindrical surface of Example 3-4.



0=260 1
conical
surface

X

Figure 3-13 Point P(Ry, 61, ¢) in spherical coordi-
nates.



X

Figure 3-14 Differential volume in spherical coordi-
nates.



Figure 3-15 Spherical strip of Example 3-5.



y=rsing

Figure 3-16 Interrelationships between Cartesig
coordinategx,y,z) and cylindrical coordinates, @, z).
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<

Figure 3-17 Interrelationships between base vecto
(%,9) and(F, ).



Table 3-2 Coordinate transformation relations.

Transformation ‘ Coordinate Variables ‘

Unit Vectors

Vector Components

Cartesian to r= 3/x2+y2 f = Xcosp+ ysing Ar = Accosp+Aysing
cylindrical @ = tan1(y/x) @= —Ksinp+ycosp Agp = —Assing+ Aycosp
z2=12 2=12 A=A
Cylindrical to X =TI COSQ % = f cosp — @sing Ax = Arcosp— Aysing
Cartesian y=rsing ¥ = f sing+ @cosp Ay = Arsing+ Aycosp
z2=12 2=2 A=A
Cartesian to R= {/X2+y2+7 R = Xsin6 cosp Ar = AcsinB cosp
spherical +ysin@sing+ zcosb + Aysinfsing+ A,cosf
=tan [ {/}®+y?/Z | 6 =%cosfcosp Ag = AcCcosB cosp
+ ycosfsing — zsin@ + Aycosfsing — A;sinf
@ = tan1(y/x) @= —Ksinp+ycosp Agp = —Acsing + Aycosp
Spherical to x = Rsin6 cosp % = Rsin@ cosp Ax = ArSinB cosyp
Cartesian +§cose cosp— @sing + Agcosf cosp — Aysing
y=Rsin@sing y= Rsm95|n<p Ay = ArsinBsing
+9cosesm<p+<pcosq) + Ag cosfsing+ Aycosp
z=Rcosf 2 = Rcoso —0sind A; = ArRcosO — Agsin@
Cylindrical to =242 R = sin@ + zcosh Ag = A sin@ + A,cosf
spherical —tan Yr/2) (E): f cosf —Zsin6 Ag = A cosf — A;sinf
p=0 =9 Ap = Ay
Spherical to r =Rsin@ f = Rsin +6coso A = ArSind + Agcost
cylindrical =0 &):(i) Ap=Agp
z= Rcosf 2 = Rcosf —0sind A, = ARCosO — Agsinf
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Figure 3-18 Interrelationships betweefx,y,z) and
(R6,9).



z Py=x+dx,y+dy z+dz)
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Figure 3-19 Differential distance vectodl between
pointsP; andP.
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Figure 3-20 Flux lines of the electric fieldE due to a
positive charge|.
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Figure 3-21 Flux lines of a vector fieldE passing
through a differential rectangular parallelepiped
volumeAv = Ax Ay Az
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(b) Azimuthal field

Figure 3-22 Circulation is zero for the uniform field
in (a), but it is not zero for the azimuthal field in (b).
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contour C

Figure 3-23 The direction of the unit vectat is along
the thumb when the other four fingers of the right hau
follow dI.
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Figure 3-24 Geometry of Example 3-12.



Figure P3.20 Arrow representation for vector fielc
E =fr (Problem 3.20).



P1=(0,3)

Py=(-3,0)

Figure P3.41 Problem 3.41.
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Figure P3.50 Contours for (a) Problem 3.50 and (k
Problem 3.51.
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Figure P3.52 Contour paths for (a) Problem 3.52 an
(b) Problem 3.53.
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Figure P3.55 Problem 3.55.



L Line charge p,

Y

X

(a) Line charge distribution

Surface charge p

(b) Surface charge distribution

Figure 4-1 Charge distributions for Examples 4-.
and 4-2.



Volume charge p, As'

T e [
el b e A= pu As' At

—Al—
(a)
p — A
Vs v As =n As
:- —»u Ag =pu-As At
A = p,u As At cos

(b)

Figure 4-2 Charges with velocityy moving through a
cross sectiods' in (a) andAsin (b).



Figure 4-3 Electric-field lines due to a charge



X

Figure 4-4 The electric fieldE at P due to two charges
is equal to the vector sum & andEs.



Figure 4-5 Electric field due to a volume charge
distribution.



(b)

Figure 4-6 Ring of charge with line densitg,. (a) The
field dE; due to infinitesimal segment 1 and (b) the fielc
dE; anddE; due to segments at diametrically opposi
locations (Example 4-4).
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Figure 4-7 Circular disk of charge with surface charg
densityps. The electric field aP = (0,0, h) points along
thezdirection (Example 4-5).
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inVy

D-ds

Gaussian surface S
enclosing volume V

Figure 4-8 The integral form of Gauss's law states thi
the outward flux oD through a surface is proportional tc
the enclosed charde.
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Figure 4-9 Electric fieldD due to point charge.
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Figure 4-10 Gaussian surface around an infinitely lor:
line of charge (Example 4-6).
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Figure 4-11 Work done in moving a chargga distance
dy against the electric field is dW = gE dy.



Figure 4-12 In electrostatics, the potential differenc
betweenP, and P, is the same irrespective of the pat
used for calculating the line integral of the electric fie!
between them.



P=(R,0,¢)

—q dcos 0

(a) Electric dipole

00

R<
(b) Electric-field pattern

Figure 4-13 Electric dipole with dipole momemt = qd
(Example 4-7).



Table 4-1 Conductivity of some common materials
at20°C.

| Material Conductivity , o (S/m) |
Conductors
Silver 6.2 x 107
Copper 58 x 10’
Gold 41x 107
Aluminum 35x 107
Iron 100
Mercury 16
Carbon 3x 10
Semiconductors
Pure germanium 2.2
Pure silicon %104
Insulators
Glass 1012
Paraffin 1015
Mica 10715
Fused quartz s
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Figure 4-14 Linear resistor of cross sectiof and
lengthl connected to a dc voltage souiée



Figure 4-15 Coaxial cable of Example 4-9.



(a) External Eex¢ =0

Nucleus
E
q
d
—-q
Center of electron cloud
(b) External E¢y; # 0 (c) Electric dipole

Figure 4-16 In the absence of an external electr
field E, the center of the electron cloud is co-located wi
the center of the nucleus, but when a field is applied, 1
two centers are separated by a distathce



Positive surface charge Polarized molecule

Negative surface charge

Figure 4-17 A dielectric medium polarized by ar
external electric field.



Table 4-2 Relative permittivity (dielectric constant) and dielectric strength of common materials.

Material

Relative Permittivity , &

Dielectric Strength, Eqg (MV/m) |

Air (at sea level)
Petroleum oil
Polystyrene
Glass

Quartz

Bakelite

Mica

1.0006
2.1
2.6

4.5-10

3.8-5
5
5.4-6

3
12
20

25-40
30
20
200

£ = g&yandey = 8.854x 10712 F/m.



Figure 4-18 Interface between two dielectric media.



Table 4-3 Boundary conditions for the electric fields.

Field Component | Any Two Media D'\i/le?(ej(i:l:m: %51 ('\:A(;er?(;ldgozr
Tangential E Eqit = Ext Eit=Ex=0
Tangential D Dit/€1 =Dat/&2 Dit=Dx =0
Normal E &1E1n — &Eon = ps Ein=ps/€1 Exn=0
Normal D Din—Don=ps Din = ps Doy =0

Notes: (1)ps is the surface charge density at the boundary; (2) nor
components o, Dy, E», andD-, are alondi,, the outward normal unit vecto

of medium 2.

mal

=



x-y plane

&

Figure 4-19 Application of boundary conditions at the
interface between two dielectric media (Example 4-10]
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Figure 4-20 When a conducting slab is placed in an external electric figldcharges that accumulate on the conduc
surfaces induce an internal electric fi@d= —E;. Consequently, the total field inside the conductor is zero.



Figure 4-21 Metal sphere placed in an external electr
field Eo.
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Figure 4-22 Boundary between two conducting medi
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Figure 4-23 A dc voltage source connected to |
capacitor composed of two conducting bodies.
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Figure 4-24 A dc voltage source connected to a parallel-plate capa@ample 4-11).
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Figure 4-25 Coaxial capacitor filled with insulating material of pertivity £ (Example 4-12).
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(a) Charge Q above grounded plane (b) Equivalent configuration

Figure 4-26 By image theory, a charge above a grounded perfectly conducting plane is equivate@Qtand its image-Q
with the ground plane removed.
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(a) Charge distributions above ground plane (b) Equivalent distributions

Figure 4-27 Charge distributions above a conducting plane and theig@maethod equivalents.



___________ z=0 plane
_Q = (Oa 07 _d)

Figure 4-28 Application of the image method for
finding E at pointP (Example 4-13).



Figure P4.10 Problem 4.10.



Figure P4.19 Kite-shaped arrangment of line charge
for Problem 4.19.



Figure P4.29 Problem 4.29.
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Figure P4.36 Electric potential distributions of
Problem 4.36.
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Figure P4.37 Problem 4.37.
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Figure P4.45 Cross-section of hollow cylinder of
Problem 4.45.
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Figure P4.51 Dielectric slabs in Problem 4.51.
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Figure P4.54 Electron between charged plates of
Problem 4.54.
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Figure P4.56 (a) Capacitor with parallel dielectric
section, and (b) equivalent circuit.
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Figure P4.57 Dielectric sections for Problems 4.57 an
4.59.
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Figure P4.58 (a) Capacitor with parallel dielectric
layers, and (b) equivalent circuit (Problem 4.58).



Figure P4.60 Problem 4.60.
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Figure P4.61 ChargeQ next to two perpendicular,
grounded, conducting half-planes.
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Figure P4.62 Currents above a conducting plan
(Problem 4.62).
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Figure P4.63 Conducting cylinder above a conductin
plane (Problem 4.63).



Table 5-1 Attributes of electrostatics and magnetostatics.

Attribute

Electrostatics

Magnetostatics

Sources

Stationary charges, Steady current3

Fields and Fluxes E andD H andB
Constitutive parameter(s) € ando u
Governing equations
e Differential form 0-D=py 0-B=0
OxE=0 OxH=J
e Integral form jéD-ds:Q jéB-ds:O
E-dl=0 %H-dlzl
( (
Potential Scalav, with VectorA, with
E=-1V B=0OxA
Energy density We = 3€E? Wi = SuH2
Force on chargeq Fe=0qE Fn=quxB
Circuit element(s) CandR L




Fn=quBsin 8

(a)

(b)

Figure 5-1 The direction of the magnetic force exerte
on a charged particle moving in a magnetic field is (
perpendicular to botB andu and (b) depends on the
charge polarity (positive or negative).
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Figure 5-2 When a slightly flexible vertical wire is
placed in a magnetic field directed into the page (
denoted by the crosses), it is (a) not deflected when
current through it is zero, (b) deflected to the left whe
| is upward, and (c) deflected to the right whens
downward.



(b)

Figure 5-3 In a uniform magnetic field, (a) the net forc:
on a closed current loop is zero because the integra
the displacement vectall over a closed contour is zero
and (b) the force on a line segment is proportional to t
vector between the end poir{ = 1£ x B).
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Figure 5-4 Semicircular conductor in a uniform fielc
(Example 5-1).



Figure 5-5 The forceF acting on a circular disk that
can pivot along the axis generates a torqie=d x F
that causes the disk to rotate.
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Figure 5-6 Rectangular loop pivoted along tlyeaxis:

(a) front view and (b) bottom view. The combination ¢
forcesF; andF3 on the loop generates a torque that ten
to rotate the loop in a clockwise direction as shown in (l
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F m (magnetic
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Figure 5-7 Rectangular loop in a uniform magneti
field with flux densityB whose direction is perpendicula
to the rotation axis of the loop, but makes an ar@jlgith
the loop’s surface normal.



(dH out of the page)

®dH
(dH into the page)
Figure 5-8 Magnetic fielddH generated by a curren

element dl. The direction of the field induced at poiat
is opposite to that induced at point.
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(a) Volume current density J in A/m?2

3,

e,

[

(b) Surface current density Jg in A/m

Figure 5-9 (a) The total current crossing the cros
sectionS of the cylinder isl = [gJ-ds. (b) The total
current flowing across the surface of the conductor



at do  the page

(b) ;

Figure 5-10 Linear conductor of length carrying a
currentl. (a) The fielddH at pointP due to incremental
current elementll. (b) Limiting angles6; and 6,, each
measured between vectodl and the vector connecting
the end of the conductor associated with that angle
pointP (Example 5-2).



1
=
Magnetic field — | £~ p

=8
=8

-

1t
Figure 5-11 Magnetic field surrounding a long, lineal
current-carrying conductor.
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Figure 5-12 Circular loop carrying a current
(Example 5-3).
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(a) Electric dipole (b) Magnetic dipole (c) Bar magnet

Figure 5-13 Patterns of (a) the electric field of an electric dipole, {i® magnetic field of a magnetic dipole, and (c) tl
magnetic field of a bar magnet. Far away from the sources,dltbdatterns are similar in all three cases.
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Figure 5-14 Magnetic forces on parallel current
carrying conductors.
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Closed imaginary/. _\
N~ surface ~
(a) Electric dipole (b) Bar magnet

Figure 5-15 Whereas (a) the net electric flux throug
a closed surface surrounding a charge is not zero, (b)
net magnetic flux through a closed surface surround;
one of the poles of a magnet is zero.
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Figure 5-16 Ampeére’s law states that the line integre
of H around a closed conto@ is equal to the current
traversing the surface bounded by the contour. Thisis t
for contours (a) and (b), but the line integraltéfis zero
for the contour in (c) because the currér(lenoted by
the symbol®) is not enclosed by the contoGr
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Figure 5-17 Infinitely long wire of radiusa carrying

a uniform current along the+z direction: (a) general
configuration showing contour§; and Cp; (b) cross-
sectional view; and (c) a plot &f versus (Example 5-4).



Amperian contour

Figure 5-18 Toroidal coil with inner radius and outer
radiusb. The wire loops usually are much more closel
spaced than shown in the figure (Example 5-5).
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Figure 5-19 A thin current sheet in the—y plane
carrying a surface current density= XJs (Example 5-6).
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(a) Orbiting electron (b) Spinning electron

Figure 5-20 An electron generates (a) an orbit:
magnetic momern, as it rotates around the nucleus ar
(b) a spin magnetic moments, as it spins about its own
axis.



Table 5-2 Properties of magnetic materials.

Diamagnetism

Paramagnetism

Ferromagnetism

Permanent magnetic
dipole moment

No

Yes, but weak

Yes, and strong

Primary magnetization Electron orbital Electron spin Magnetized
mechanism magnetic moment magnetic moment domains
Direction of induced Opposite Same Hysteresis
magnetic field [seeFig. 5-22
(relative to external field)
Common substances Bismuth, copper, diamond, Aluminum, calcium, Iron,

gold, lead, mercury, silver, chromium, magnesium nickel,

silicon niobium, platinum, cobalt
tungsten

Typical value of xm ~—-10"° ~10° |Xxm| > 1 and hysteretig
Typical value of ~1 ~1 |ur| > 1 and hysteretic




(a) Unmagnetized domains
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(b) Magnetized domains

Figure 5-21 Comparison of (a) unmagnetized and (I
magnetized domains in a ferromagnetic material.
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Figure 5-22 Typical hysteresis curve for a ferromag
netic material.
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(a) Hard material (b) Soft material

Figure 5-23 Comparison of hysteresis curves for (a)
hard ferromagnetic material and (b) a soft ferromagne

material.
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Figure 5-24 Boundary between medium 1 with and medium 2 with,.
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(a) Loosely wound (b) Tightly wound
solenoid solenoid

Figure 5-25 Magnetic field lines of (a) a loosely wounc
solenoid and (b) a tightly wound solenoid.



1 (out) S

Figure 5-26 Solenoid cross section showing geomet
for calculatingH at a pointP on the solenoid axis.
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(a) Parallel-wire transmission line
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(b) Coaxial transmission line

Figure 5-27 To compute the inductance per un
length of a two-conductor transmission line, we need
determine the magnetic flux through the aihbetween
the conductors.
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Figure 5-28 Cross-sectional view of coaxial transmis

sion line (Example 5-7Y® and® denoteH field out of
and into the page, respectively.



Figure 5-29 Magnetic field lines generated by currént
in loop 1 linking surfaces, of loop 2.



Figure 5-30 Toroidal coil with two windings used as ¢
transformer.
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Figure P5.2 Particle of chargeq projected with
velocity u into a medium with a uniform fieldB
perpendicular ta (Problem 5.2).
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Figure P5.3 Configuration of Problem 5.3.
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Figure P5.4 Hinged rectangular loop of Problem 5.4,



20-turn coil

Figure P5.6 Rectangular loop of Problem 5.6.
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Figure P5.8 Current-carrying linear conductor o
Problem 5.8.



Figure P5.9 Configuration of Problem 5.9.
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Figure P5.11 Circular loop next to a linear curren
(Problem 5.11).
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Figure P5.12 Arrangement for Problem 5.12.
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Figure P5.14 Parallel circular loops of Problem 5.14.
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Figure P5.15 Problem 5.15.
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Figure P5.16 Current loop next to a conducting wire
(Problem 5.16).



Figure P5.17 Parallel conductors supported by string
(Problem 5.17).
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Figure P5.18 A linear current source above a currel
sheet (Problem 5.18).
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Figure P5.19 Three parallel wires of Problem 5.19.



Figure P5.20 Long wire carrying currenlt, just above
a square loop carrying (Problem 5.20).
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Figure P5.32 Adjacent magnetic media (Problen
5.32).
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Figure P5.34 Magnetic media separated by the plar
x—y=1 (Problem 5.34).
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Figure P5.36 Three magnetic media with paralle
interfaces (Problem 5.36).
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Figure P5.40 Loop and wire arrangement fol
Problem 5.40.
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Figure P5.41 Linear conductor with currerf next to
a circular loop of radiua at distancel (Problem 5.41).



Table 6-1 Maxwell’'s equations.

Reference Differential Form Integral Form
Gauss's law O0-D=pv %D-ds:Q (6.2
: oB
Faraday’s law OxE= T 74 E-dl = f/ -ds (6.2*
No magnetic charges 0-B=0 748 -ds=0 6.3
s
(Gauss'’s law for magnetism)
D D
Ampere’s law DXH—J+0— %H-dl/(Jer—) -ds (6.9
ot C ot

*For a stationary surfacg




Loop Coil
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Galvanometer Battery

Figure 6-1 The galvanometer (predecessor of tt
ammeter) shows a deflection whenever the magnetic 1
passing through the square loop changes with time.
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(a) Loop in a changing B field
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(b) Equivalent circuit

Figure 6-2 (a) Stationary circular loop in a changin
magnetic fieldB(t), and (b) its equivalent circuit.



/ \N turns

Figure 6-3 Circular loop with N turns in the x—
y plane. The magnetic field iB = By(y2 + 23) sinwt
(Example 6-1).
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Figure 6-4 Circuit for Example 6-2.
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Figure 6-5 In a transformer, the directions bf andl,
are such that the flu® generated by one of them i
opposite to that generated by the other. The direction
the secondary winding in (b) is opposite to that in (a), a
so are the direction df and the polarity o¥..
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Figure 6-6 Equivalent circuit for the primary side of the
transformer.
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Figure 6-7 Conducting wire moving with velocity in
a static magnetic field.
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Figure 6-8 Sliding bar with velocityu in a magnetic field that increases linearly wittthat is,B = ZBgx (Example 6-3).
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Figure 6-9 Moving loop of Example 6-4.
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Figure 6-10 Moving rod of Example 6-5.
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Figure 6-11 Principles of the ac motor and the a
generator. In (a) the magnetic torque on the wires cau
the loop to rotate, and in (b) the rotating loop genera!

an emf.
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Figure 6-12 Aloop rotating in a magnetic field induce:
an emf.
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Figure 6-13 The displacement currehy in the insulating material of the capacitor is equal to thedweting currentsc in

the wire.



Table 6-2 Boundary conditions for the electric and magnetic fields.

Field Components General Form Mgdiumll Mgdium.z Mgdiumll Medium 2
Dielectric Dielectric Dielectric Conductor
Tangential E N2 x (E1—E2) =0 Eit = Ex Eit=Ex=0
Normal D fi2+(D1—D2) = ps Din—Dan = ps Dan = ps Don=0
Tangential H ﬁz X (Hl = Hz) = Js Hlt = H2t H]_t = JS H2t =0
Normal B ﬁz . (B]_ - Bz) = 0 Bln = BZn B]_n = BZn = O

Notes: (1)ps is the surface charge density at the boundaryJ{23 the surface current density at the bounds
(3) normal components of all fields are alamg the outward unit vector of medium 2; (B); = Ey implies that
the tangential components are equal in magnitude and ehiraldlirection; (5) direction ofls is orthogonal to

(H1—H2).

ry;



Charge density p,

J

S encloses v

J

Figure 6-14 The total current flowing out of a volumé
is equal to the flux of the current densilythrough the
surfaceS, which in turn is equal to the rate of decrease
the charge enclosed M



Figure 6-15 Kirchhoff's current law states that the
algebraic sum of all the currents flowing out of a junctic
is zero.



Charge AV’

distribution p,,
R’ V(R)

X

Figure 6-16 Electric potentiaM(R) due to a charge
distributionpy, over a volumé/’.



Figure P6.1 Loops of Problem 6.1.
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Figure P6.2 Loop of Problem 6.2.
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Figure P6.6 Loop coplanar with long wire (Problem
6.6).
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Figure P6.7 Rotating loop in a magnetic field
(Problem 6.7).
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Iron core with g,

Figure P6.8 Problem 6.8.
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Figure P6.10 Rotating rod of Problem 6.10.
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Figure P6.11 Moving loop of Problem 6.11.
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Figure P6.13 Rotating circular disk in a magnetic fielc
(Problem 6.13).
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Figure P6.16 Parallel-plate capacitor containing a loss
dielectric material (Problem 6.16).
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(b) Plane-wave approximation

Figure 7-1 Waves radiated by an EM source, such
a light bulb or an antenna, have spherical wavefronts,
in (a); to a distant observer, however, the wavefront acr

the observer’s aperture appears approximately planai
in (b).



Ionosphere

Transmitter

Earth's surface

Figure 7-2 The atmospheric layer bounded by tr
ionosphere at the top and Earth’s surface at the bott
forms a guiding structure for the propagation of rad
waves in the HF band.
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Figure 7-3 A guided electromagnetic wave travelin
in a coaxial transmission line consists of time-varyir
electric and magnetic fields in the dielectric mediu
between the inner and outer conductors.



y

Figure 7-4 A transverse eIectromagneUc (TEM) wav
propagating in the directiok = 2. For all TEM wavesk
is parallel toE x H.
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Figure 7-5 Spatial variations o andH att = O for the
plane wave of Example 7-1.
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Figure 7-6 The wave(E,H) is equivalent to the sum
of two waves, one with fieldéE", H,") and another with
(Ey,HY ), with both traveling in thet-z direction.



Figure 7-7 Linearly polarized wave traveling in the
~+zdirection (out of the page).
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(b) RHC polarization

Figure 7-8 Circularly polarized plane waves propaga
ing in the+z direction (out of the page).
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Figure 7-9 Right-hand circularly polarized wave
radiated by a helical antenna.



Figure 7-10 Right-hand circularly polarized wave of
Example 7-2.
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Figure 7-11 Polarization ellipse in th&-y plane, with
the wave traveling in the direction (out of the page).
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Figure 7-12 Polarization states for various combinations of the poion anglegy, x) for a wave traveling out of the
page.
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Figure 7-13 Attenuation of the magnitude &(z) with
dlstancez. The skin depths is the value ofz at which
|Ex(2)|/|Exo| = €71, orz= &= 1/a.



Table 7-1 Expressions fora, 8, nc, up, and A for various types of media.

Lossless| Low-loss Good
Any Medium Medium Medium Conductor Units
(c=0) | (")« 1) | (/g >1)
- - 17 1/2
a— e (2 g ' 0 g /B /o (Np/m)
N 2 g 2V ¢ H P
- - 17 1/2
UE gl 2 Y
B= > 1+ (?) +1 w./IE w./IE vrfuo (rad/m)
B g &\ u T . a
o= £(-15) : Ll e | @
Up = w/B 1/\/H€ 1/ /1€ anf/uo (m/s)
A= 2m/B = up/f Up/f Up/f up/f (m)

Notes: ¢’ = ¢; ¢’ = g/w; in free spaceg = &, U = Lo; in practice, a material is considered
low-loss mediumife” /¢’ = 0/we < 0.01 and a good conducting mediuneif/&’ > 100.

a
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(b) ac case

Figure 7-14 Current density] in a conducting wire is
(a) uniform across its cross section in the dc case, but
in the ac case] is highest along the wire’s perimeter.



Q=
%

(b) Equivalent J; over skin depth J

Figure 7-15 Exponential decay of current densiy(z)
with z in a solid conductor. The total current flowing
through (a) a section of widtlv extending between= 0
andz = « is equivalent to (b) a constant current density
flowing through a section of depth.
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(a) Coaxial cable

\
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(b) Equivalent inner conductor

Figure 7-16 The inner conductor of the coaxial cabl
in (a) is represented in (b) by a planar conductor of wic
2ma and depthds, as if its skin has been cut along it
length on the bottom side and then unfurled into a plar
geometry.
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Figure 7-17 EM power flow through an aperture.
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Figure 7-18 Solar radiation intercepted by (a)
spherical surface of radiuRs, and (b) Earth’s surface
(Example 7-5).



Table 7-2 Power ratios in natural numbers and in
decibels.

G G [dB]
10¢ 10x dB
4 6 dB
2 3dB
1 0dB
0.5 -3dB
0.25| —-6dB
0.1 | —10dB
1023 | —30dB




Figure P7.39 Imaginary rectangular box of Prob
lems 7.39 and 7.40.
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Figure 8-1 Signal path between a shipboard transmit
(Tx) and a submarine receiver (Rx).
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(a) Boundary between transmission lines

Incident plane wave

Transmitted plane wave

Reflected plane wave

Medium 1 Medium 2
m Uy

z=0
(b) Boundary between different media

Figure 8-2 Discontinuity between two different

transmission lines is analogous to that between t
dissimilar media.
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oblique incidence oblique incidence

Figure 8-3 Ray representation of wave reflection and transmission)atgiamal incidence and (b) oblique incidence, ai
(c) wavefront representation of oblique incidence.
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Medium 1 (g, u1) Medium 2 (&3, 1)
z=0
(a) Boundary between dielectric media

Infinite line

(b) Transmission-line analogue

Figure 8-4 The two dielectric media separated by th
x=y plane in (a) can be represented by the transmissi
line analogue in (b).



Table 8-1 Analogy between plane-wave equations for normal incidencand transmission-line equations, both under

lossless conditions.

Plane Wave Fig. 8-4(a)

Transmission Line [Fig. 8-4(b)]

E1(2) = XEj(e Tka? 4 relk?)

Hi(z) =¥ Eg(e Tz _relkz)

Ex(2) = XTEje ik
] E0 jkoz
T—2e
Ha(2) =¥ -
F=(n2—n1)/(n2+n1)
T=1+T
ki = w\/H1€1, ko = w\/I12&2

ni=+/Mi/€, N2=+/H/€&

(8.11a)

(8.123)

(8.13)

(8.14a)

Vi(2) =V, (e71PZ 4 Telhiz) (8.11b)
~ V+ .
i1(2) = 2 (e 1Az _relhr?) (8.12)
1
Va(2) = 1V e 1R22 (8.1%)
. Vo i
i 22 .
200 =15~ Zos e (8.1%)
I = (Zo2— Zo1)/(Zo2+ Zo1)
T=1+T
BL=wyme, Bo=w/l2E
Zp1 andZy, depend on

transmission-line parameters




Antenna beam
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Figure 8-5 Antenna beam “looking” through an aircraf
radome of thickness (Example 8-1).
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Figure 8-6 (a) Planar section of the radome c
Fig. 8-5at an expanded scale and (b) its transmission-||
equivalent model (Example 8-1).
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Figure 8-7 Normal incidence at a planar boundar

between two lossy media.
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Figure 8-8 Wave patterns for fieldg; (z,t) andH; (zt)
of Example 8-3.
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Figure 8-9 Wave reflection and refraction at a plan:

Medium 2 (g3, u2)

boundary between different media.
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(c) ny>ny and 6; = 0,

Figure 8-10 Snell's laws state tha®, = 6 and
sing; = (n1/ny) sinG;. Refraction is (a) inward ifiy < N
and (b) outward ifhy > ny; and (c) the refraction angle is
9 if n; > ny and@, is equal to or greater than the critice
angle@; = sin~(ny/ny).



Figure 8-11 The exit angleds is equal to the incidence
angle6, if the dielectric slab has parallel boundaries ai
is surrounded by media with the same index of refracti
on both sides (Example 8-4).
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Figure 8-12 Waves can be guided along optical fibers as long as the refteatigles exceed the critical angle for tot
internal reflection.
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Figure 8-13 Distortion of rectangular pulses caused by modal dispriisioptical fibers.
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(a) Perpendicular polarization
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(b) Parallel polarization

Figure 8-14 The plane of incidence is the plane cor
taining the direction of wave travek;, and the surface
normal to the boundary. In the present case the plane
incidence containing; andz coincides with the plane of
the paper. A wave is (a) perpendicularly polarized wh
its electric field vector is perpendicular to the plane |
incidence and (b) parallel polarized when its electric fie
vector lies in the plane of incidence.
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Figure 8-15 Perpendicularly polarized plane wave incident at an afiglgpon a planar boundary.
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Figure 8-16 Parallel-polarized plane wave incident &
an anglef; upon a planar boundary.
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interface.



Normal Incidence Perpendicular Parallel
Property 6=6=0 Polarization Polarization
Reflection coefficient | I = 12— _ N12¢08 — nycosi = N2C0S6k — 11COSG;
N2+mM 12€0s8 + N1 cosf N2CosB; + N1 cosH
- - 2 2n,cos6 21, cos6
Transmission coefficient| T = — 12 T, = 2 ! T = 2 !
N2+m N2C€0sB; + N1COs6; N2 COSB; + 11 COSH
cosB;
Relation of I to T T=1+T T, =141 Ty =(1+T)) —t
T 1 +1 1 I 1+ H) 0%,
Reflectivity R= | R =1|l.[? R =rl?
L co cosl
Transmissivity T =12 (ﬂ) T =1 )? Mu.cost T =72 N1.c0s6
n2 12C0s6 N2CosH
Relationof Rto T T=1-R T, =1-R| T =1-R

Notes: (1) sirb = \/p1€1/U2E2SIN6; (2) N1 = /Hi/€1; () N2 = \/2/&; (4) for nonmagnetic medig

N2/N1=ny/no.

Table 8-2 Expressions forl', 1, R, and T for wave incidence from a medium with intrinsic impedancen; onto a
medium with intrinsic impedance n,. Angles and 6 are the angles of incidence and transmission, respectively
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Figure 8-19 Angular plots for(R;, T|) for an air—glass
interface.
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Figure 8-20 Wave travel by successive reflections in (i
an optical fiber, (b) a circular metal waveguide, and (c)
rectangular metal waveguide.
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Figure 8-21 The inner conductor of a coaxial cable ce
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Figure 8-22 Waveguide coordinate system.
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Figure 8-23 TMy; electric and magnetic field lines
across two cross-sectional planes.



Table 8-3 Wave properties for TE and TM modes in a rectangular wavegui@ with dimensionsa x b, filled with a
dielectric material with constitutive parameters € and . The TEM case, shown for reference, pertains to plane-wave
propagation in an unbounded medium.

Rectangular Waveguides Plane Wave

TE Modes TM Modes TEM Mode
== ’Z“ (%) Ho cos( ™) sin () e ihz | E,= %’3 () Egcos( M) sin (") e 1FZ | E, = Ee 1P
Ey= ’L‘é’“ () Hosin (M) cos("Y) e 1FZ | E, = ’k‘cﬁ (1) Epsin (M) cos("Y) e 1F? | E, = Ee 1
E,=0 E, = Eosin(™) sin () e~1F? E,=0
ﬁx = —Ey/ZTE |:|vx = _Ey/ZTM |_~|X = _Ey/n
H, = Hocos(™™) cos(") e 1Az H,=0 H,=0
Zre=n/y/1-(fc/1)? Zrv = n+/1—(fc/f)? n=+/Hu/e

Properties Common to TE and TM Modes

u my 2 ny 2
=2 (3) + () fo = not
applicable
B =ky1—(fc/F)? k= /€

up:%’:upo/ 1— (fo/f)2 Up, = 1//HE
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Figure 8-24 Cutoff frequencies for TE and TM mode:
in a hollow rectangular waveguide wih= 3 cm and
b =2 cm (Example 8-9).
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Figure 8-25 The amplitude-modulated high-frequenc
waveform in (b) is the product of the Gaussian-shap
pulse with the sinusoidal high-frequency carrier in (a).
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Figure 8-26 w-B diagram for TE and TM modes in &
hollow rectangular waveguide. The straight line pertai
to propagation in an unbounded medium or on a TE

transmission line.
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From Eq. (8.118a), 2" = 5% + 2.
Hence, ¢’ = tan~ (7 /Ba).

From Eq. (8.118b), 2" = —IZ 42
Hence, 6" = —tan_l(w//@a).

(a) z'and z" propagation directions
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(b) TEM waves

Figure 8-27 The Tk mode can be constructed as th
sum of two TEM waves.
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Figure 8-28 A resonant cavity supports a very narro
bandwidth around its resonant frequerfgy
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Figure P8.9 Dielectric layers for Problems 8.9 to 8.11



Figure P8.17 Prism of Problem 8.17.



Figure P8.18 Prism of Problem 8.18.



Figure P8.19 Periscope prisms of Problem 8.19.
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Figure P8.21 Light incident on a screen through
multilayered dielectric (Problem 8.21).
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Figure P8.22 Apparent position of the air bubble ir

Problem 8.22.



Oil drop

Nglass

Figure P8.23 Oil drop on the flat surface of a glas:
semicylinder (Problem 8.23).



Electric field hnes
of radiated wave

Antenna
Transmission line
=
Generator Cuided EM wave
Transition

region

Wave launched
into free space
(a) Transmission mode

Antenna
Transmission line
ReC ’ ) ~— A \A/ A
Detector Guided EM wave
or receiver ..
Transition
region Sf B9
Incident
wave

(b) Reception mode

Figure 9-1 Antenna as a transducer between a guid
electromagnetic wave and a free-space wave, for b
transmission and reception.
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Figure 9-2 Various types of antennas.
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Figure 9-3 Far-field plane-wave approximation.
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Figure 9-4 Short dipole placed at the origin of &
spherical coordinate system.



Figure 9-5 Spherical coordinate system.
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Figure 9-7 Radiation patterns of a short dipole.
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Figure 9-8 Definition of solid anglelQ = sin6 d6 dg.
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Figure 9-9 Three-dimensional pattern of a narrow
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Figure 9-10 Representative plots of the normalized radiation pattéra microwave antenna in (a) polar form and (t
rectangular form.
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Figure 9-11 The pattern solid angl€, defines an

equivalent cone over which all the radiation of the actt
antenna is concentrated with uniform intensity equal
the maximum of the actual pattern.



Figure 9-12 The solid angle of a unidirectional
radiation pattern is approximately equal to the product
the half-power beamwidths in the two principal plane

that is,Qp ~ BxzByz.
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Figure 9-13 Polar plot ofF (8) = co 6.
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Figure 9-14 Center-fed half-wave dipole.



' Conducting
, T A4 plane

/

Figure 9-15 A quarter-wave monopole above
conducting plane is equivalent to a full half-wave dipo
in free space.
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Figure 9-16 Current distribution for three center-fe

dipoles.
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Figure 9-17 Radiation patterns of dipoles with length
of A/2,A,and 3\ /2.
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Figure 9-18 Receiving antenna represented by
equivalent circuit.
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Figure 9-19 Transmitter—receiver configuration.
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Figure 9-21 Radiation by apertures: (a) an opening |
an opaque screen illuminated by a light source throu
a collimating lens and (b) a parabolic dish reflect
illuminated by a small horn antenna.
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Figure 9-22 Radiation by an aperture in thxg—y5 plane atz= 0.
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Figure 9-24 Radiation patterns of (a) a circular reflectc
and (b) a cylindrical reflector (side lobes not shown).
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Figure 9-25 The AN/FPS-85 Phased Array Radar Facility in the Floridahgamlle, near the city of Freeport. A severe
mile no-fly zone surrounds the radar installation as a safefygern for electroexplosive devices, such as ejectiots sewl
munitions, carried on military aircraft.
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Figure 9-26 Linear-array configuration and geometry
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Hence, the distand® ~ Ry —idcosb.
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Figure 9-28 Two half-wave dipole array of Example 9.5.
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Figure 9-29 (a) Two vertical dipoles separated by
distanced along thez axis; (b) normalized array patterr
in they-z plane forag=a; =1, Y1 = Yo = —11, and
d=A/2.
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Figure 9-30 Normalized array pattern of a uniformly
excited six-element array with interelement spacii
d=2A/2.
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Figure 9-31 Normalized array pattern of a two-elemer
array with spacingl = 7A /2.
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Figure 9-32 The application of linear phase.
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Figure 9-33 Normalized array pattern of a 10-elemel
array withA /2 spacing between adjacent elements. /
elements are excited with equal amplitude. Throu
the application of linear phase across the array, !
main beam can be steered from the broadside direc!
(6p=90°) to any scan angléy. Equiphase excitation
corresponds téy = 90°.
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Figure 9-35 Steerable six-element array (Example 9.¢



Figure P9.16 Triangular current distribution on a shor
dipole (Problem 9.16).
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Figure P9.26 Communication system of Problem 9.2¢
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Figure P9.29 Satellite repeater system.
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Figure P9.28 Problem 9.28.
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Figure P9.45 Three-element array of Problem 9.48.
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Figure 10-1 Elements of a satellite communicatio
network.
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Figure 10-2 Orbits of geostationary satellites.
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Figure 10-3 Satellite of masans in orbit around Earth. For the orbit to be geostationarydistanceR, between the satellite
and Earth’s center should be 42,164 km. At the equator, triesponds to an altitude of 35,786 km above Earth’s surfac



Table 10-1 Communications satellite frequency alloce
tions.

Downlink Uplink
Frequency Frequency
Use (MHz) (MHz)
Fixed Service
Commercial 3,700-4,200 5,925-6,425
(C-band)

Military (X-band) 7,250-7,750 7,900-8,400
Commercial

(K-band)
Domestic (USA) 11,700-12,200 14,000-14,5(
International 10,950-11,200 27,500-31,0Q(
Mobile Service
Maritime 1,535-1,542.5 1,635-1,644
Aeronautical 1,543.5-1,558.8 1,645-1,66(

Broadcast Service
2,500-2,535 2,655-2,690
11,700-12,750

Telemetry, Tracking, and Command
137-138, 401-402, 1,525-1,540
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Figure 10-4 Elements of a 12-channel (transponder) communicationsrsys
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Figure 10-5 Basic operation of a ferrite circulator.
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Figure 10-6 Polarization diversity is used to increas
the number of channels from 12 to 24.
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Figure 10-7 Satellite transponder.
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Figure 10-8 Spot and multibeam satellite antenna sy
tems for coverage of defined areas on Earth’s surface.
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Figure 10-9 Basic block diagram of a radar system.
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Figure 10-10 A pulse radar transmits a continuous tra
of RF pulses at a repetition frequenty
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Figure 10-11 Radar beam viewing two targets at rang:
R; andR,.
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Figure 10-12 The azimuth resolutioAx at a rangeR is
equal tofR.
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Figure 10-13 The output of a radar receiver as a function of time.
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Figure 10-14 Bistatic radar system viewing a target with radar cross@e¢RCS)ox.
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opposite to that direction as
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(b) Moving source

Figure 10-15 A wave radiated from a point sourct
when (a) stationary and (b) moving. The wave
compressed in the direction of motion, spread out in t
opposite direction, and unaffected in the direction norn
to motion.
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Figure 10-16 Transmitter with radial velocity, approaching a stationary receiver.
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Figure 10-17 The Doppler frequency shift is negativ:
for a receding target (& 8 < 90°), as in (a), and positive
for an approaching target (96 6 < 180°), as in (b).
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Figure 10-18 Antenna feeding arrangement for a
amplitude-comparison monopulse radar: (a) feed ho
and (b) connection to phasing network.



Figure 10-19 A target observed by two overlappin
beams of a monopulse radar.
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Figure 10-20 Functionality of the phasing network in (a) the transmit mahd (b) the receive mode for the elevatio
difference channel.
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Figure 10-21 Monopulse antenna (a) sum pattern, (|
elevation-difference pattern, and (c) angle error signal



